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Study of Upward-Facing Spray Cooling with Water at Atmospheric 

Pressure 

Alberto D. Sato 

ABSTRACT 
 
 
 
 

 Spray cooling is a high heat removal technique which has been used 

widely in many industries, especially metallurgical, where the control of the 

temperatures of metals is an important factor to obtain the desired 

microstructure; and also in microelectronics where is very important to obtain 

high heat fluxes at relatively low surface temperatures. 

 In this study, an open loop spray cooling system has been fabricated to 

provide an upward-facing spray over a 12 mm diameter test surface. A full cone 

spray nozzle was used to deliver deionized water to the test surface at five 

pressures (10, 15, 20, 25 and 30 psi), and at three different distances to the test 

surface (3, 7 and 12 mm). The volumetric flow rate at the surface used in the 

experiments depended on both the pressures and the distances. For a distance 

of 3 mm and 7 mm, the volumetric flow rate range from 336.6 to 627 ml/min while 

for 12 mm, the range was from 336.6 to 484.28 ml/min. 

 Heat fluxes of 1.92 to 451 W/cm2, 2.1 to 417.3 W/cm2 and 1.9 to 409.5 

W/cm2 for distances of 3, 7 and 12 mm respectively were registered at different 



 xi

input power levels. For all the three distances, the volumetric flow rate affects the 

heat flux, especially for 3 mm; and this effect decreases for higher distances. 

However, the distance between the nozzle and the test surface has little effect on 

the heat flux at low pressures but at higher pressures, the difference in heat flux 

is mainly due to the fact that part of the spray does not impinge the test surface.
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Chapter 1 – Background 

 

Spray cooling is a very well known method used to dissipate high heat 

fluxes from heated surfaces. Sprays are produced by nozzles which drastically 

affect their characteristics: Sauter mean diameter (d32), droplet velocity and 

volumetric flow rate. There are many types of nozzles but the most common is 

the pressure nozzle; and the most widely used pressure nozzle is the full cone 

spray-nozzle. 

The experimental studies of spray cooling can be classified into two 

categories according to the way they are conducted [1]. 

a. Non-stationary methods: In this method the metal sample is heated to the 

desired temperature, then the heat is withdrawn and simultaneously the 

sample is wetted by the spray. Finally, the sample temperature decay versus 

time is recorded. 

b. Stationary methods: In this method the metal sample is heated continuously 

by a controlled heating energy source in order to maintain its surface 

temperature constant during spraying the liquid. 

The temperature of the metal sample greatly affects the heat transfer 

during the spray cooling stage. At relatively low temperatures, heat transfer is 
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caused mainly by steady-state boiling in which three distinct regions exist: forced 

convection and evaporation, nucleate boiling region, and critical heat flux.  At  

higher temperatures, heat transfer is caused mainly by transient cooling in which 

film boiling and transition boiling exist [2]. 

Spray cooling is of great importance in various industries such as 

metallurgy, microelectronics, nuclear-power, etc; especially microelectronics 

where this method is used to remove high heat fluxes (>1000 W/cm2) from 

surfaces with a considerably low wall superheat.  

 

1.1 Literature Review 

There has been little research done on upward-facing spray cooling; most 

investigations have been focused on downward-facing spray cooling. Rybicki, J. 

R., et al [3] compared single-phase and two-phase cooling characteristics for 

upward-facing and downward-facing sprays. In this experiment, PF - 5052 

(dielectric coolant) was used as a working fluid which was sprayed over a square 

heated test surface made of copper (1.0 cm2). Three full-cone spray nozzles 

were used to span a broad range of volumetric flow rates:  

- Nozzle 1: V” = 35 to 52 m3s-1/m2 

- Nozzle 2: V” = 83 to 101 m3s-1/m2 

- Nozzle 3: V” = 113 to 186 m3s-1/m2 

Boiling curves were generated by raising the voltage across the cartridge 

heaters in small increments and recording the heat flux from the test surface, the 

surface temperature, and the nozzle inlet temperature.  The boiling data were 



recorded after reaching steady-state. Steady-state was attained when the 

temperature variation was 0.1 °C or less during a 10 - minute period.  

Rybicki studied the hydrodynamic characterization of a spray, especially 

two very important hydrodynamic parameters: volumetric flow rate, V”, and d32.  

The volumetric flow rate is non-uniform along the heated surface, as is shown in 

Figure 1. 

 

Figure 1: Spray Volumetric Flux Distribution for Uniform Point Source [3]. 
 

 The investigator used the figure to develop the following equation, in 

which the mean volumetric flux is the total spray flow rate divided by the impact 

area. 

                                                 _ 
                          V” =  _____V”T______                    (1) 

                                                          π {H tan (θ/2)}2

 This model is used to predict the flow rate distribution on the surface. At 

the center of the surface, the flow rate is maximum. This behavior affects the 

cooling uniformity and the Critical Heat Flux (CHF). The low flow in the outer 

regions means that the CHF will start sooner at the perimeters. 

 3
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 The distance between the nozzle and the test surface also has a strong 

influence on the CHF. Mudawar, I., and Estes, K. A. [4], demonstrates 

experimentally how large and small distances between the nozzle and surface 

yield relatively poor CHF. Large distances cause a large portion of the droplets to 

fall outside the test surface while small distances yield a small droplet impact 

area. The highest CHF was achieved when the impact area just inscribed the test 

surface: 

H tan (θ/2) = L/2                            (2) 
 
L: Length of the test surface 

 The results obtained by Rybicki show that increasing flow rate generally 

enhances single-phase heat transfer and CHF, but the effect on the nucleate 

boiling region is very limited (as shown in Figure 2). The effect of subcooling is 

weak in the single-phase region but like flow rate, increasing subcooling yields an 

increase in CHF for each of the three nozzles. Similar results were observed 

when decreasing the droplet diameter which has been done utilizing different 

nozzles and pressures. This result obtained by Rybicki contradicts the results 

obtained by Chen, R. H., et al [5] who reported that d32 does not have a definite 

effect on the CHF. 

 Another important result of this experiment is that the single-phase heat 

transfer data for upward-oriented and downward-oriented sprays can be fitted 

using a correlation based on the Reynolds number of the spray and the Prandtl 

number of the liquid; and for nucleate boiling, they can be fitted using a 

correlation based on density ratio, Weber number and Jacob number. All these 



correlations show that the spray orientation has virtually no effect on spray 

cooling performance. 

 

 

 

 

Figure 2: Boiling Curves for Different Flow Rates at ∆Tsub = 27°C for (a) Nozzle 1, (b) Nozzle 2, 
                 and (c) Nozzle 3 [3]. 
 

Many researchers studied a downward-facing spray over a heated 

surface. Jia, W., and Qiu, H. [6] studied the droplet dynamics and heat transfer 

for spray cooling of a 10 - mm diameter, horizontal copper surface using 
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deionized water and surfactant solution as working fluids. To produce the spray, 

a multi-nozzle (5) spray system was constructed in order to study the effect of 

mass flux on spray cooling. The mass flux spray varied from 0.156 to 1.20 kg/m2. 

The characterization of the droplets was done by a laser-Doppler anemometry 

(LDA). 

 They identified four different regions in the boiling curve (as shown in 

Figure 3): 

- Region I:  In this region, the surface temperature is lower than 100 °C and 

the heat flux maintains a low value. 

-  Region II: In this region, the surface temperature reaches a few degrees 

higher than 100 °C and the heat flux increases rapidly (nucleate boiling). 

-  Region III: In this region, the heat flux increases but not as rapidly as in 

region II due to the heat transfer mechanism changes from the nucleate 

boiling to droplets evaporative cooling gradually. 

-  Region IV: In this region the film boiling starts. 



   
Figure 3: Surface Heat Flux and Expulsion Rate During Spray Cooling With 

                     Surfactant Solution (mass flux = 0.538 kg/m2s) [6]. 
 
 Results obtained in this experiment show that the critical heat flux (CHF) 

increases with the mass flux of water, and the surfactant addition in the solution 

shows a significantly advantage over pure water. In the boiling curve, the CHF 

temperature is moved to the left due to an increment of surfactant in the solution. 

This low CHF temperature means a high heat flux at relatively low temperatures 

which is very useful in multiple applications, especially microelectronics. 

 Lin, L., and Ponnappan, R. [7] studied the heat transfer characteristics of 

spray cooling in a closed loop using a 1 x 2 cm2 test surface and FC - 87, FC - 

72, methanol and water as working fluids. In this experiment, eight miniature 

nozzles in a multi-nozzle plate were used to generate a spray array. The results 

from this experiment corroborate that the volumetric flux of the working fluid 

drastically affects the heat flux due to the fact that higher volumetric flux implies a 

thicker liquid film that decreases the evaporation from the free surface and 
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increases the convection. Lin and Ponnappan found that Spray cooling can 

dissipate heat fluxes up to 90W/cm2 with fluorocarbon fluids, 490 W/cm2 with 

methanol and heat fluxes over 500 W/cm2 with water. 

 Ortiz, L., and González, J. E. [8] investigated steady-state high heat fluxes 

using spray cooling on a 1.25 cm diameter test surface using distilled water as a 

working fluid. The experimental apparatus consisted on three major systems: the 

heater, the fluid delivery, and the data acquisition systems (as shown in Figure 

4). The heated surface consisted of a copper bar with 3.5 cm base and 16.64 cm 

length, but the diameter of the test surface was reduced to 1.25 cm diameter 

because this reduction increases the heat flux at the tip of the copper bar. The 

copper bar was drilled three times from the test surface at different distances and 

separated by 120° at each level; in those holes, nine K-type thermocouples were 

inserted (as shown in Figure 5). 

 

Figure 4: Experimental Apparatus [8]. 
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Figure 5: Copper Bar Side and Top Views [8]. 

 The nozzles utilized were full cone WDB - 0.5 with 0.0211 cm orifice 

diameter at 45° cone angle, and WDB - 1.0 with 0.0279 cm orifice diameter at 

30° cone angle for which flow rates ranged between 1.48 and 2.91 l/h. 

 Ortiz calculated the heat flux, using the temperature gradient provided by 

the three levels of thermocouples and Fourier’s Law: 

q” = k ∆T                                       (3) 
                                                           ∆x 

 Where k is the thermal conductivity of copper, ∆T is the difference 

between the temperatures of two thermocouple levels, and ∆x is the distance 

between these thermocouples levels. 

 The sets of experiments were done at steady-state which means that the 

copper bar was heated slowly while the heated surface was sprayed until the 

surface temperature remained constant for more than 15 minutes. 

 9

 The results from this experiment clearly confirm that high flow rates 

produce high heat fluxes (as shown in Figure 6). They also studied the effects of 

surface roughness, subcooling and impact angle on the heat flux. Smooth 



surfaces produced lower steady-state high heat fluxes than rough surfaces due 

to the fact that rough surfaces have more nucleation sites to produce bubbles. 

Increment in subcooling temperature decreases the heat-flux removal capacity 

for smooth surfaces, but increases the heat-flux for rough surfaces. Finally, 

increments in the impact angle decrease the heat removal capacity because 

inclination induces sprayed water to fall, decreasing the opportunity to maintain a 

liquid thin film over the surface. 

 

Figure 6: Comparison of Mass Flow Rates for Smooth Surface [8]. 
 

 Horacek, B., et al [9], studied the heat transfer mechanisms for single 

nozzle spray cooling, using different amounts of dissolved gas. In this 

experiment, a full cone spray nozzle was used to cool a microheater array that 

consisted of 96 heaters and total area of 0.49 cm2 (7.0 mm x 7.0 mm). The spray 

nozzle was oriented normal to the microheater array and located 17 mm from the 

surface. The flow rate was set at 32 ml/min and FC - 72 was used as the working 

fluid. The results clearly suggest that thermal subcooling increases the heat 
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transfer for a given flow rate which confirm the results of previous researchers. 

Dissolved gas shifts spray cooling curves to the right and CHF increases with 

increasing gas content due to the fact that dissolved gas increases the Tsat 

(temperature of saturation) of the fluid. Visualization and measurements of the 

liquid-solid contact area and the three-phase contact line length were made by 

using a total internal reflectance technique (TIR).  At low wall superheats, the 

surface was almost completely wet by liquid but at higher wall superheats (near 

CHF) the surface was mainly covered by intermediate-sized droplets. Beyond 

CHF (film boiling), part of the heater appeared completely dry out. 

 Jiang, S., and Dhir, V. K. [10] studied the effect of the presence of non-

condensibles in a closed system on the heat transfer coefficient in single phase 

and boiling modes. The test surface was 20 mm in diameter made of copper 

which was sprayed with deionized water. The distance between the nozzle and 

the test surface was constant at 13 mm. In this experiment, the system total 

pressure was set at 56 kPa, 72.5 kPa and 101 kPa while varying the vapor 

pressure inside the chamber from 2.32 kPa to 97.9 kPa. The results from this 

experiment show that the heat flux increases from the single phase regime to 

partial nucleate boiling regime; this increment is more discernible for vapor 

pressure of 2.32 kPa. This experiment also shows a little increment of heat flux 

when the temperature of subcooling increases. The system total pressure has 

little effect on the heat transfer coefficient in single phase regime but after boiling, 

higher total pressures yield higher heat flux for the same wall superheat.  
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 Fabbri, M., and Dhir, V. K. [11] studied the heat transfer under arrays of 

microjets using deionized water and FC40 as test fluids. The test surface was a 

19.3 mm diameter copper cylinder, which represented the backside of an 

electronic microchip. Results from this experiment show that arrays of microjets 

produces the same heat flux rate as a few large jets but with lower coolant 

flowrates. Another interesting result is that there is only a small affect of the 

distance between the microjets and the test surface, however at very large 

distances, the jets may become hydrodynamically unstable and break up into 

droplets. 

 Many researchers studied cooling of heated surfaces by jet or micro-jet 

cooling devices which were created with specific parameters like: internal angle, 

shape of the orifice, inner-diameter of the orifice, etc.  Wang, E. N., et al [12] 

studied two-phase microjet impingement cooling in a confined geometry test 

device. In this experiment, circular jets with diameters less than 100 µm were 

machined in glass and heater/sensor test structures were fabricated to examine 

heat transfer and microjet characteristics.  Two separate heater devices were 

fabricated, one for uniform heating and the other for simulating the presence of a 

chip hotspot. The results show heat transfer coefficients of approximately 1000 

W/m2°C at the stagnation point and 700 W/m2°C at 1.5 mm away from the 

stagnation point were achieved. Again, in this experiment the flow rate had a 

great affect on the heat flux. Increasing the flow rate from 0.75 ml/min to 1 ml/min 

for the same size jet, the temperature at the stagnation point was decreased by 

15% (from 80 °C to 70 °C). 
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 Another investigation into jet cooling by an array was done by Oh, C. H. et 

al [13] who studied high heat flux removal by liquid-jet array cooling modules. 

The orientation of the spray was upward-facing, impinging on a faceplate (10 

cm2) heated by a thin film heater. Heat fluxes of up to 17 MW/m2 were produced 

and temperature differences of up to 500 °C between the heater surface and the 

average bulk temperature of the water were measured. The graphs of 

temperature difference Vs heat flux show a linear relationship between both 

parameters, which suggest that cooling was entirely convective without boiling. In 

this experiment, the modules could dissipate fluxes above 20 MW/m2 but 

difficulties with the heating element prevented the study of such high fluxes. 

 Spray cooling and liquid jet impingement cooling were compared and 

studied by Oliphant, K. et al [14] in the non-boiling region. The experimental 

apparatus consisted of a heated surface made of aluminum with a1.9 cm 

diameter. The delivery fluid system consisted of two different jet arrays, one with 

7 holes and the other with 4 holes, using two different jet diameters: 1.0 and 1.59 

mm, and a commercially available spray nozzle with Sauter mean diameter of 50 

µm and velocity of approximately 3.0 m/s. Results suggest that the heat transfer 

depends on the number and velocity of the impinging jets; and contrary to the 

results of other researchers, Oliphant suggests that spray cooling does not have 

a definitive dependence on mass flux. Spray cooling and jet impingement can be 

used to provide the same heat transfer rates, but spray uses significantly lower 

mass flux.  
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   Many researchers focused their studies on the behavior of the droplet(s) 

impacting a heated surface. Kizito, J. P., et al. [15], is one of many researchers 

who studied, theoretically and experimentally, the behavior of a single droplet 

impacting a heated substrate. Kizito investigated experimentally the behavior of a 

droplet impacting a heated surface using a high-speed camera (2000 

frames/sec). In this experiment, the temperature of a heated billet was held 

constant during the droplet impact. The droplet velocities were increased or 

decreased by translating the release mechanism vertically, using gravitational 

force. They also used many types of fluids which included alkanes, alcohols and 

deionized water. Results from this experiment suggests that the heat transfer 

from the surface to the droplet is maximum in the case where the droplet has the 

widest extent of spread on the substrate and does not splash. 

 Other researchers who investigated the behavior of droplets impacting a 

heated surface are Kandlikar, S., and Steinke, M. E. [16]. They studied the 

contact angles of droplets during spread and recoil after impinging on a heated 

surface. The experimental setup consisted of a heated surface which was 

impinged by a water droplet from a droplet delivery system and the droplet 

dynamics were captured by a high-speed digital camera. Many materials were 

used as a heated surface and each one with different surface roughness values; 

the SilverStone surface had a surface roughness of 1.35 µm; the copper surface 

was prepared with surface roughness of 0.63 µm, 0.32 µm, 0.25 µm, and 0.02 

µm; the stainless steel surface had a surface roughness of 0.13 µm, 0.07 µm, 

0.04 µm, and 0.01 µm. The results show that the behavior of the contact angle 
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was different depending on the material of the heated surface. For copper, the 

contact angle increases for the smoothest surface while is the opposite for 

stainless steel. Another result is that the temperature of the heated surface 

affects the behavior of the impinged droplet and its contact angle. The contact 

angle is very important in spray cooling to predict the maximum spreading ratio of 

the droplet, which will affect the heat transfer. 

 Studies of the behavior of impinging droplets on a very high temperature 

plate was investigated by relatively few researchers due to the difficulty of 

achieving high test surface temperatures. Hatta, N. et al [17] investigated the 

collision dynamics of a water droplet impinging on a heated surface above the 

Leidenfrost point. In this experiment droplets from 300 to 700 µm in diameter 

were generated with an impinging velocity range between 1.2 and 6.0 m/s. These 

droplets impinged a 28 mm diameter Inconel alloy 625 test surface which was 

held at 500 °C throughout all the experiments. The deformation process of the 

droplet was recorded using a video camera; from which the critical Weber 

number between rebounding and disintegration effects could be calculated. Their 

calculated critical Weber number of nearly 50  was relatively small compared with 

other researchers as Ueda et al [18],  who obtained a critical Weber number of 

70 using droplets between 2 to 3 mm and stainless steel and copper surfaces 

heated at 300 °C. Another important conclusion obtained in this experiment is 

that the rebounding condition is influenced not only by the critical Weber number 

but by surface temperature, surface roughness, surface material, and many other 

parameters.  



 Investigations of cooling techniques in microelectronics have been 

investigated in the past 6 years; some of them investigated a spray array 

configuration to cool down VLSI chips. Wang, E. N. et al [19]; studied the effect 

of the diameter of micro-jets and the volumetric flow rate on the temperature 

profile of a heater/sensor test structure. Their results show that the difference in 

jet diameter (dn) had little effect on the temperature profile for this range of 

parameters (dn = 50 µm, and 70 µm jet, and V” = 0.75 ml/min); but the flow rates 

had a great affect on the temperature profile (shown in Figure 7). 

 

Figure 7: Comparison of Temperature Rise as Function of Power for Varying Jets Sizes and  
                    Flowrates. The Case of No Jet (No Flow) is Given for Reference [19]. 

 Bash, C. E. et al [20], studied a new method to address non-uniform high-

power density in electronic applications. The new method consisted of a thermal 

inkjet assisted spray cooling which included a Hewlett-Packard cartridge with two 

rows of 256 nozzles. Each nozzle could be controlled independently from the 

others using a control mainframe. The heated surface was a 22.5 mm x 12.5 mm 
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copper block, with K-thermocouples embedded in it, in order to measure the 

surface temperature. Results show that heat fluxes up to 270 W/cm2 can be 

dissipated with water while maintaining a high coefficient of performance. 

 Another investigation of great importance for computers was done by 

Garimella, S. V. [21], who studied an impingement-cooled system. He studied the 

effects of working fluids, pressure drop, type of heated surface and type of 

cooling fluid configuration (suction Vs impingement configuration). Pressure drop 

is a very big problem in impingement-cooling due to higher-pressure drop means 

higher input power in the system. Brignoni suggests that a simple modification of 

the orifice inlet shape, can reduce the pressure drop by 31% without affecting the 

cooling rates [22]. Another improvement of the cooling system could be done by 

employing extended surfaces and heat sinks mounted on the heat source. 

Brignoni and Garimella [23] show a relatively high increment of the cooling rates 

for the heat sink relative to the bare surface by a factor of 2.8 to 9.7. Finally, 

Garimella presents the benefits of each cooling fluid configuration; in the case of 

suction arrangement, there is the greatest surface-to-coolant temperature 

difference at lowest-velocity air. In the case of impingement configuration, there 

is a higher effectiveness of heat removal than for the suction configuration [24]. 

 Micro-jets were studied for microelectronics by many researchers. Wu, S. 

et al [25], investigated heat transfer using micro-electro-mechanical system 

(MEMS) impinging jets. A MEMS sensor chip was designed and fabricated with 

an 8 x 8 temperature array on one side. This sensor chip can measure a 2-D 

surface temperature with various jets impinging on it. A single glass nozzle, a 
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MEMs single nozzle, a MEMS nozzle array and a MEMS slot arrays were also 

fabricated for this experiment. Results from this experiment show that the cooling 

capability of a single glass jet increases with its driving pressure, and the MEMS 

single nozzle has similar cooling characteristics to a free jet at high distances 

between the nozzle and the microchip. But the results also show that lower 

pressures yield higher cooling efficiency for both single free jet and MEMS jet. 

This is very important because the design of an impinging jet cooling depends on 

the gas sources. In the case of jet array cooling, the temperature distribution is 

more uniform than single jet cooling, which increases its cooling efficiency. 

 Many researchers studied pulsed sprays which have important 

applications in many areas, especially in medicine where cryogen spray cooling 

is used to reduce the temperature of the skin when a laser is focused on it. 

Loureiro, H. M. et al [26] measured the droplet characteristics and thermal 

behavior in order to study pulsed spray cooling over a heated aluminum-plate.  In 

this experiment, the spray was generated by a pintle - type injector and the 

frequency and duration of the injection were controlled by an arbitrary function 

generator. The working fluid was gasoline with a temperature of 31 °C. The 

results show that the transient behavior of the spray can be divided into three 

periods. The first period is characterized by a sudden expansion of the liquid, 

called leading front of the spray; the second period is characterized by an 

increase of the mean droplet axial velocity up to a steady - value, called the 

steady spray; the third and final period is characterized by an asymptotic 

decrease of the mean axial velocity down to 0 m/s. Another important result is 
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that the overall heat transfer coefficient increases when decreasing the pressure 

of injection and/or the duration of injection increases. Finally, at very high test 

surface temperatures, the behavior of the spray is affected because it enhances 

evaporation and induces secondary break-up of droplets. These very small 

droplets remain suspended in the air which affect the subsequent droplets. 

 Another important parameter studied in cryogen spray cooling was the 

variation of the initial temperature of the skin-surface. Jia, W. et al [27], 

investigated the heat transfer dynamics during cryogen spray cooling of 

substrates at different initial temperature. The experimental apparatus consisted 

of a test surface made of aluminum with 10 mm x 10 mm area, and a cryogen 

delivery system with 0.7 mm - inner diameter and 63.6 mm - length nozzle, with 

tetrafluoroethane (R - 134a) as a working fluid. Results suggest that the 

maximum heat flux (q”max) increases with increasing T0 and decreasing the 

distance nozzle - surface (H); but the heat transfer coefficient (h) is not affected 

by T0. 

 Other parameters that affect cryogen spray cooling (CSC) and were 

studied carefully by researchers are the droplet size and the spray density. 

Pikkula, B. M. et al [28] used four types of delivery devices: a fuel injector with 

1.3 mm diameter, a second fuel injector with 1 mm diameter, commercial 

atomizers with 1 and 1.5 mm diameters, and a cryogen delivery device with 0.75 

mm diameter; used to deliver cryogen R - 134 a. Results show that heat removal 

varied with the types of delivery devices, but those variations were less than 

14%. This low variation was something strange due to the fact that relatively 
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large differences in mass output (greater than a factor of 6) and droplet sizes 

(greater than a factor of 2) among the devices were observed. 

 Continuing with parameters that affect CSC, Pikkula, B. M. et al [29], 

studied also the effect of droplet velocity, diameter, and film height on heat 

removal. The experimental methods included tetrafluoroethane (R-134a) as a 

working fluid, with a spurt duration set to 200 ms; and a substrate which was 

composed of epoxy resin with embedded micro-thermocouples to record internal 

temperature profiles. Results suggest that Weber number is sensitive to the 

variations in droplet velocity, and the heat removal is influenced by the Weber 

number (higher heat removal resulted from higher Weber number and higher 

velocity); also the cryogen film acts as an impediment to heat transfer between 

the impinging droplets and the substrate. 

 In spray cooling is important the angle of incidence of the droplets towards 

the heated surface. Many researchers investigated this parameter such as 

Aguilar, G. et al [30], who studied the influence of angle between the nozzle and 

skin surface during CSC. The distance between the nozzle and the test surface 

was maintained constant at 30 mm but the impinging angle was varied from 90° 

(perpendicular) to 15° in decrements of 15° plus an exaggerated angle of 5°. The 

working fluid was R - 134a which was delivered in three intervals with 50 ms 

duration. Results suggests that there is a minimal difference between the 

temperature behavior of the surface, heat flux and overall heat extraction, for the 

cases where the angle of incidence is between 90° to 15° but there is a relatively 

high difference (10% - 15%) for the 5° angle.  
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Volumetric flow rate is probably the parameter that highly affects the heat 

transfer performance.  Kim, J. H. et al [31]; studied the effect of the volumetric 

flow rate on the heat transfer on plain and microporous surfaces of a flat heater. 

Their results suggest that for low heat flux (less than 10 kW/m2), the flow rates 

(1.25, 1.75, and 2.4 ml/min) had no effect on the spray cooling curves; but for the 

case of higher heat fluxes, the heat transfer increased when the volumetric flow 

rate increased. These results seem contrary to the results suggested by Jiang, S. 

& Dhir, V. K. due primarily by the fact that spray cooling is very complex and its 

heat transfer behavior depends on so many parameters and on the range we are 

working these parameters. 

 The majority of the spray cooling experiments have been done using a 

relatively small test surface, but some researchers investigated experimentally 

the cooling of a large heated surface. Xishi, W. et al. [32], studied the effect of 

initial surface temperature and mist characteristics (droplet size, velocity, etc.) on 

a large heated surface. The experimental apparatus consisted of a pressure 

nozzle positioned 1000 mm above the surface which injected water mist to the 

hot surface; and a heated plate with 150 mm x 150 mm area, positioned 200mm 

away from the axis of the nozzle. The working pressures utilized for the nozzle 

were 0.2, 0.4, and 0.6 Mpa; and initial surface temperatures of 80, 100, and 120 

°C were utilized for the test surface.  Results show that the mist droplet cooling 

efficiency is affected by not only the initial surface temperature but by the mist 

characteristics, especially the Weber number. For all initial surface temperature, 
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the highest droplet cooling efficiency was obtained for a working pressure of 0.4 

Mpa. 

 The parameters related to the fluid system in a spray cooling device, were 

studied by Estes, K. A., and Mudawar, I. [33]. They investigated the affects of 

three spray nozzles, volumetric flux, subcooling and working fluid on nucleate 

boiling heat transfer and CHF. The spray nozzles had different orifice diameter 

(from 762 to 1700 x 10-6 m), spray angle (from 55.8 to 48.5 degrees), volumetric 

flux (from 16.6 to 216 x 10-3 m3s-1 m-2), and d32 (from 110-214 x 10-6 m). The 

results show different boiling curve shapes for the three spray nozzles. Spray 

nozzles with low volumetric flux display a more pronounced increase in the slope 

of the boiling curve because of higher evaporation efficiency, while high 

volumetric flux display little increase in the slope because of a suppression of 

nucleation and reduced evaporation efficiency. The CHF increases with the flow 

rate and subcooling but decreases with larger diameter of the droplets. In 

general, CHF is influenced by thermophysical properties of the fluid (density, 

enthalpy, specific heat at constant pressure, etc.), flow parameters (subcooling, 

pressure drop, volumetric flux), orifice parameters (nozzle orifice diameter, spray 

cone angle), and heater length. 

  

 

 

 

 



1.2 Heat Transfer Regimes 

 A typical boiling curve consists on four regimes: free convection, nucleate, 

transition and film boiling. Those regions have their own characteristics that 

make them unique with respect to the others. 

 
Figure 8: Typical Boiling Curve for Water at 1 atm: Surface Heat Flux q”, as a Function of Excess  
                Temperature, ∆Te ≡ Ts – Tsat.[34]. 

 
 During the first regime (the straight line in Figure 8) the heat transfer is by 

natural convection, and there is no formation of vapor bubbles. During the 

second regime, between points (A) and (C), the growth of vapor bubbles at 

nucleation sites on the heated surface is observed. In this regime the frequency 

of bubble departure increases with surface temperature. The formation of these 

 23



 24

bubbles increases the disturbance of the hot layer which raises the heat flux 

during this regime. The third regime begins after the CHF (point C in Figure 8) 

which is the critical or burnout heat flux that represents the end of nucleation 

boiling regime. In this region, also known as Transition, the increase in vapor 

production of the bubbles is so severe that the flow of liquid to the surface is 

restricted, producing a decrease of the heat flux. This reduction of heat flux 

continues until it reaches a minimum heat flux commonly known as the 

Leidenfrost point (point D in Figure 8). After this point,  there is an increment of 

heat flux even greater than the CHF at much higher temperatures but because 

the surface is covered by a vapor layer, the heat transfer is due by radiation 

instead of thermal conduction (Film Boiling). 

 Baehr H. D. & Stephan, K. [35] described three types of boiling: 

evaporation, nucleate boiling and convective boiling; each one of them having 

different characteristics and behavior. Evaporation appears when the wall is 

heated to a temperature just above the saturation temperature, and there is only 

a few or even no formation of vapor bubbles. Nucleate boiling appears when the 

temperature of the wall is increased and vapor bubbles begin to form. Finally, in 

convective boiling, the local heat transfer coefficient is independent of the heat 

flux (q”) but is strongly dependent on the mass flow rate and the quality of the 

vapor (see figure 9). 

 In order to understand nucleate boiling, it is very important to understand 

the bubble growth dynamics as Hewitt, G. F., et al [36] explains for the case of 

both spherical and isolated bubbles. In a first instance, the growth is dominated 



by hydraulic and surface tension forces and the radius of the bubbles increases 

rapidly. After that, the bubble growth takes place because of a temperature 

gradient that exists between the superheated liquid/solid surface and the 

interface which means that the growth rate is governed by conduction heat 

transfer. Many other phenomenons affect the growth rate; for example, Shah, V. 

L., and Sha, W. T. [37], showed that the decrement of the thermal boundary layer 

thickness, due to the motion of the bubble, increases the growth rate. Van 

Stralen, S. J. D. [38] results suggest that the bubble growth rate is affected by the 

 

Figure 9: Trends of the Heat Transfer Coefficient for a Horizontal Evaporator Tube [35]. 

influence of neighboring bubbles. One big bubble can affect negatively the 

growth rate of another smaller neighbor because large bubbles absorb almost all 

the energy from the superheated liquid allowing little to be absorbed by the 

smaller ones. 
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1.3 Objectives of the Present Study 

 As stated in the literature review, there are many parameters that affect 

the heat transfer during spray cooling. One of these parameters is the direction of 

the spray (downward-facing, upward-facing or lateral spraying), which generally 

has been studied as downward-facing or even lateral spraying. There is almost 

no information about upward-facing spray cooling. In order to investigate this 

orientation and other parameters, these objectives are proposed: 

1. To design an upward-facing spray cooling apparatus which will allow 

us to investigate some heat transfer performance. 

2. To carry out experiments with the apparatus designed specially for this 

study in order to investigate how some parameters affect the heat transfer 

characteristics. 

3. To explain the differences or similarities between the upward-facing 

and downward-facing spray cooling from this experiment and studies from 

other researchers. 

 

1.4 Determination of Heat Flux and Surface Temperature 

 In this investigation as well as in other applications, the measurement of 

the surface-test temperature can not be done directly either because the 

installation of the thermocouple may disturb the experiment or because the 

environment is chemically destructive and could damage it. An inverse method 

was used to calculate the surface temperature and the heat flux in the copper 

cylinder. These estimations which involve internal measurements are associated 



with errors and uncertainties that will affect the accuracy of the calculation of both 

surface temperature and heat flux.  

 

Figure 10: Schematic View of the 1-D Inverse Heat Conduction Problem (IHCP). 
 

The heat flux between points “2” and “3” can be calculated using Fourier’s 

Law of conduction in 1-D. 

For the present study, the surface heat flux was considered as a function 

only of a 1-D conduction problem, and the variation of the heat flux between 

points (2) – (3), and (1) – (2) were considered in order to calculate the heat flux 

between the surface and point (1). The heat flux between those points varied 

because of different causes, some of them were: the heat lost between those 

points was not equal (heat lost in the surface of the cartridge holder), or simply 

the contact between some thermocouples and the cartridge holder were better 

 27



 28

than the others (the thermocouples were covered with a high thermal conductivity 

paste and then embedded into the cartridge holder). 

There were two possible cases, one case when the heat flux along points 

(1)-(2) was greater than points (2)-(3) and the other case, the opposite. For the 

first case, which was the most common case, the heat flux in the surface was 

greater than the other two, and was calculated as follows: 

A. Case q”1-2 > q”2-3 

The difference of the heat flux between points (1)-(2) and (2)-(3), (q”1-2 – 

q”2-3), occurred along the points (1)-(3) or (L3-L1); but the difference between the 

heat flux between the surface and point(1), and (1)-(2), (q”w-1 – q”1-2), occurred 

along the distance between the surface and point (2) or L2 (see figure 10).  This 

theory can be expressed as: 

q”1-2 – q”2-3 = (L3-L1)
                                 q”w-1 – q”1-2         L2 
 

Then q”w-1 can be expressed as: 

q”w-1 = q”1-2 + L2 x  (q”1-2 – q”2-3)            (4) 
   (L3 – L1) 

The temperature of the surface can be calculated using the previous heat 

flux: 

Tw = TC1 – L1 x q”w-1                      (5) 
                                                            KCu 

 

 
B. Case q”1-2 < q”2-3 

This case is almost the same as the previous case, but the heat flux 

between the surface and point (1) was lower than the other two. 
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q”w-1 = q”1-2 - L2 x  (q”1-2 – q”2-3)             (6) 
     (L3 – L1) 

 
The temperature of the surface can be calculated using the same equation 

for the previous case. 

 

1.5 Determination of Heat Transfer Coefficient 

 The heat transfer coefficient is considered a factor to calculate the heat 

transfer, and it is also considered as a thermal resistance due to the fact that it 

adds inversely like resistances [39].  

q = h x A x (Tw – Tf)                      (7) 

In this equation, h is used to calculate the input power or heat lost (q). The 

total heat removed, is dependent on the heat transfer coefficient and the area 

over which the spray systems acts. As an example of this, we can obtain the 

same amount of heat removed in a small surface impinged by a high pressure 

fluid and in a large surface impinged by a softer spray. Then the heat removal 

depends on how quickly the material can conduct the heat to the surface, and h 

can give us this important information.  

 There are two ways to determine the heat transfer coefficient, one of them 

is by steady-state experiments, and the other is by transient experiments.  In this 

study, h was calculated using the following equation: 

h =   _q”__                             (8) 
       (Tw – Tf) 

 
 Where the heat flux (q”) and the temperature of the test surface (Tw) were 

calculated using the temperature gradient obtained from the thermocouples 
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embedded in the cartridge holder (see subchapter 2.1). In this study, q” is divided 

by (Tw – Tf) instead of (Tw – Tsat) because the experiments were done in the 

single-phase regime instead of the boiling regime. 

 

1.6 Uncertainty and Error Analysis 

An error is always inherent in a measurement; that means even using the 

most accurate instrument, there still are errors. Barry, B. A.[40] describes two 

different types of errors: systematic errors (also called cumulative errors) and 

accidental errors (random errors, usually not cumulative errors). Systematic 

errors are subdivided in: natural errors (like refraction of light rays, thermal 

expansion of materials, etc.), instrumental errors (like bad calibration of the 

instrument) and personal errors (by physical limitations or bad habits of the 

observer). 

In order to study errors, is very important to perform statistical analysis. 

Statistics can be used to determine the dispersion (or uncertainty) of the data, 

from which variation and standard deviation are probably the most common 

methods. Beauford, J. [41] in the book: “Statistics in Science” describes 

important statistics tools like: mean median, mode, variance and standard 

deviation. 

                                         _ 
• Sample mean: x = Σ x                                                   (9) 

                                           n 
                                                   
                                                                     _ 

• Variance (entire population): σ2 = Σ (x-x)2                     (10) 
                                                                      n 
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• Standard Deviation (entire population): σ = √ σ2           (11) 
 

It is important to know the difference between error and uncertainty. An 

error is used for the cases of bad measurement by the observer and by bad 

measurement scale, but an uncertainty is used for inaccuracy of measurement 

results. In order to estimate the uncertainty for a result involving measurements 

of several independent quantities, it is necessary to know the following theory: 

A. If the desired result is the sum or difference of two measurements, then the 

absolute uncertainties add. 

Z = x + Ux + y + Uy = x + y + Ux + Uy        (12) 

For independent errors with normal distribution or Gaussian Distribution, the 

uncertainty for the result can be expressed as: 

Uz = √ Ux2 + Uy2                        (13) 

B. If the desired result involves multiplying (or dividing) measured quantities, 

then the relative uncertainty of the result is the sum of the relative errors in 

each of the measured quantities.  

Z = x1x2x3…
                                                             y1y2y3… 

lnz = lnx1 + lnx2 + lnx3 + … - lny1 –lny2 –lny3-… 

δ(lnz) = dz = dx1 + dx2 + … - dy1 + dy2 + dy3 - … 
                                             z      x1      x2             y1      y2      y3 

 
 

Simplifying:  Uz = Σi ( Uxi) + Σi ( Uyi )         (14) 
        z            xi              yi 
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For independent errors with normal distribution or Gaussian Distribution, the 

uncertainty for the result can be expressed as: 

Uz = √ [ Σi ( Uxi )2 + Σi ( Uyi )2 ]              (15) 
              z                  xi               yi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

Chapter 2 - Experimental Methods and Procedures 

 

 Presented in this chapter are descriptions of the experimental apparatus 

and the methods and procedures used to perform the experiments. The 

experimental apparatus shown in Figure 11 consisted basically of three systems: 

fluid system, heater system, and acquisition system. Each system consisted of 

many devices which allow for the measurement of heat fluxes along a heated 

copper cylinder sprayed by deionized water. The methods and procedures are 

described in detail in order to demonstrate the credibility of the experiment. 

 
Figure 11: Schematic of Experimental Apparatus. 
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2.1 Experimental Apparatus 

2.1.1 Fluid System 

The fluid system (shown in Figure 12) consists of a high pressure nitrogen 

cylinder which provides pressure to a pressure tank. Due to pressurization of the 

tank, the working fluid is forced out of the pressure tank through the circuit. 

 

Figure 12: Schematic View of the Fluid System. 

The flowmeter is used to control the volumetric flux and the pressure of 

the deionized water which is expelled through a nozzle. Water reaches the 

nozzle and exits as a high velocity spray. 

 The high-pressure nitrogen cylinder has a two-stage regulator valve 

which; first stage controls high pressure up to 3000 psi, and the second stage 

controls low pressure up to 200 psi. This two-stage regulator valve is used to 

provide constant pressure to the pressure tank, producing a constant flow rate 

during each experiment. 
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Figure 13: Two-Stage Regulator Valve. 

 

A. Pressure Tank Specifications 

The pressure tank is a dispensing pressure vessel made by Millipore 

Corporation which has the following specifications: 

• Materials: Type 316L stainless steel with stainless fittings; Viton 

gaskets and O-rings; EPDM base. 

• Pressure/Temperature: The maximum pressure allowed is 7 bars or 

100 psi. and the maximum temperature allowed is 121 °C or 250 °F. 

• Dimensions and Capacity: 229 mm diameter x 595 mm (9 in. x 23.44 

in.); capacity: 20 liters. 

Note: The pressure tank has a relief valve set for a pressure of 80 psi. 

B. Pressure Gauges 

Both pressure gauges, one in the pressure tank and the other just before 

the nozzle, can indicate pressures up to 160 psi or 11 kg/cm2, in steps of 2 psi or 

0.1 kg/cm2 respectively. 

 35



 36

C. Flow meter 

The flow meter made by GILMONT Instruments has the following 

specifications: 

• Float Material: Carboloy (14.98 g/ml) 

• Max. & min. readings: 1866 ml/min & 176 ml/min respectively. (The 

tube has 13 scale readings). 

• Pressure/Temperature: The maximum pressure allowed is 13.6 bars or 

200 psi. and the maximum temperature allowed is 121°C or 250°F. 

D. Nozzle 

This is a full cone spray nozzle type “S” with the following specifications: 

• Pipe size NPT: 1/8 “ 

• Pressure/Capacity: The maximum pressure allowed is 150 psi at which 

a flow rate of 0.39 GPM or 1478.1 ml/min is provided. 

 

2.1.2 Heater System 

The heater system (shown in Figure 14) consists of a cartridge holder 

(copper cylinder) which increases in temperature as the inserted heater is 

powered. The heater receives electric power via a variable autotransformer.  The 

temperature gradient in the cartridge holder was measured using three 

thermocouples inserted into the copper cylinder; the first, 3 mm above the test 

surface; the second, 13 mm above the test surface and rotated 120° with respect 

to the first one; and the third, 23 mm above the surface and rotated 120° with 

respect to the second one. 



 

Figure 14: Schematic View of the Heater System. 

A. Copper cylinder (or cartridge holder) 

The copper cylinder consists of a 4 1/3” – long rod with two different 

diameters in its ends; the end into which the heater is inserted has a diameter of 

1 ” and the end which receives the spray has a diameter of 12 mm. The copper 

cylinder was fabricated in the Engineering machine shop of The University of 

South Florida and made for 99% pure copper bar stock. The end which receives 

the heater has a hole of 2 2/3” in length and 13 mm in diameter; and the holes 

which receive the thermocouples have a length of 6 mm and a diameter of 1 mm. 

The design and dimensions of the cartridge holder are shown in Figure 15. 
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Figure 15: Copper Cylinder (Cartridge Holder). 

B. Heater 

 The heater used in this experiment was made by Chromalox with 82 mm 

length and 12.5mm diameter.  The heater was inserted into the copper cylinder 

and its cables were plugged into the variable autotransformer. It is rated for a 

maximum potential difference of 120 V and a maximum input power of 750 W. 

C. Variable autotransformer 

The variable autotransformer was made by Staco Energy Products 

Co.(shown in Figure 16) , and has the following characteristics: 

• Input:  Nominal (120 Volts), Line (50-60 Hz). 

• Range:  0 - 140 (0 - 100%), in steps of 2.8 V or 2%. 

• Max. Output: Constant Current Load (max. 10 Amps, max. 1.4 kVA) 
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Figure 16: Variable Autotransformer. 

D. Thermocouples 

Three precision, Type K, fine wire thermocouples made by Omega (0.010 

” in diameter and 72 ” in length) were used for the experiments. The 

thermocouples were used to measure the temperature gradient in the copper 

cylinder. Temperatures were monitored and recorded using an acquisition 

system to which the thermocouples were connected. 

 

2.1.3 Acquisition System 

The acquisition system consists of a desktop computer, an acquisition 

system made by National Instruments (NI), and National Instruments LabView 

7.1 (shown in Figure 17). The acquisition system has a terminal block for up to 

31 channels (shown in Figure 18). The data obtained from the acquisition system 

was displayed on the computer monitor and recorded in files using LabView. 
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A. Acquisition system 

The acquisition system consists of a PCI card which was installed on the 

motherboard of the computer. This card is connected via cable with the SCXI - 

1000 or signal conditioning. Finally, the thermocouples are connected to the 

SCXI via a terminal block (SCXI - 1303), shown in Figure 17. 

 

Figure 17: SCXI System Components (National Instruments). 

The thermocouples were connected to the terminal block (SCXI - 1303) as 

shown in figure 18. 
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Figure 18: Installation of Thermocouples in the Terminal Block (SCXI-1303). 

B. Computer 

The computer has an Intel Pentium III Processor with 663 MHz and 256 

MB of RAM.  

C. Acquisition Software 

Labview is a software tool for designing test, measurement, and control 

systems. This software analyzes real-time signals and shares the results via 

output-data devices like computer screen, printer, etc. In this experiment, the 

LabView program showed the temperatures indicated by the thermocouples on 

the computer screen, and recorded the temperatures in electronic format. 

The acquisition system was configured to read 1 sample in a rate of 10 

Hz. Thus, the program displays 1 set of data (for three thermocouples) in the 

chart every 0.1 seconds; or 10 sets every second. This resolution is good enough 

to obtain an acceptable measure of the transient temperatures. 
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Figure 19: Front Panel Designed for the Experiment. 

 

 
2.2 Operating Procedure 

The operating procedure involved the following steps: 

A. Verification of the equipment 

At the beginning of the experiment, the pressure in the nitrogen cylinder 

and in the pressure tank were verified to be 0 psi, and at the same time, the input 

power from the variable autotransformer was verified to be 0 W. All the cables 

from the heater system as well as the hoses and connections from the fluid 

system were verified to prevent a short-circuit or a possible reduction of the fluid 

pressure due to rundowns. Other verifications involved: distance between the 

nozzle and the test surface, functioning of the acquisition system, etc. 

 

 42



 43

B. Operating Procedure 

After the pressure tank was filled with deonized water, it was pressurized 

with nitrogen from the nitrogen cylinder. The valve between the flowmeter and 

the pressure tank was maintained closed until the activation of the heated 

system. After the fluid system was ready, the input power from the variable 

autotransformer was increased in steps of 5% from 5% to 80% (1.5 to 628.6 W). 

The temperatures indicated by the thermocouples inserted into the copper 

cylinder increased soon after the increment of the input power. The fluid system 

was activated as soon as the temperature reached a certain level. The volumetric 

flow rate was controlled using a flowmeter between the nozzle and the pressure 

tank (336.6 to 627 ml/min). When the temperatures reached steady-state, after 4 

- 5 minutes approximately, the temperatures were recorded for 12 seconds 

approximately (50 data). 

Once the data were recorded, the input power was increased by 5% and 

the procedure was repeated. Because there was a limited amount of deionized 

water in the pressure tank, it was important to leave some water in order to cool 

the test surface. When the maximum of the three temperatures reached 35 °C, 

the fluid system was stopped and the pressure tank was refilled with deonized 

water. 

C. Maintenance 

During the experiment, some equipment needed to be maintained. They 

included the copper cylinder, variable autotransformer, and flowmeter. The 

copper cylinder oxidized when it was used at high input power levels. Thus, its 



surface was cleaned regularly. At very high heat fluxes, there is always risk of the 

electric cables being short-circuited. Thus, it was occasionally necessary to 

change the fuse in the variable autotransformer. Finally, filling the pressure tank 

sometimes introduced solids into the fluid system that became stuck in the filter 

of the flowmeter. Thus, the filter and the flowmeter were cleaned occasionally. 

 

2.3 Experimental Parameters 

2.3.1 Distance between Test Surface and Nozzle 

The distance between the nozzle and the test surface is directly related to 

the sprayed area and the volumetric flow rate. Thus, this parameter affects the 

heat transfer performance. Because of that; many researchers have studied its 

affects on spray cooling systems. In the case when the nozzle is very near the 

test surface, the sprayed area become very small and in the case when the 

nozzle is very far from the test surface, part of the liquid is sprayed off the test 

surface, thus there is a reduction of the volumetric flow rate (as shown in Figures 

20 and 21). 

 
            Figure 20: Distance (H) Affecting the          Figure 21: Distance (H) Affecting the 

                       Sprayed Area.                                             Volumetric Flow Rate. 
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Fabbri, M & Dhir, V. K. [11], studied the effect of an orifice plate to heater 

distance (H) on the heat transfer rate, using FC 40 as a test liquid and flowrates 

from 240 ml/min [13.67 µl/mm2 s] to 410 ml/min [23.36 µl/mm2 s]. The spray 

distance was varied from 10 mm to 2.1 mm, which corresponds to a range of 

H/dn (ratio between the distance orifice-heater and jet’s diameter) between 12.1 

and 57.6. The results show that for high Reynolds number (500, high velocity of 

spray) and for increments of H/dn(increment of the distance H), there is an 

increment  in Nusselt number; but for small Reynolds number (300), there is no 

change in Nusselt number. This means that for high velocity of the spray, we can 

obtain higher rate of heat transfer using higher H, but only until a certain distance 

due to the hydrodynamic instability of the spray.  

Another study made by Wang, G. X., et al. [42] in CSC shows that the 

spray distance has a high effect on the temperature of the skin.  For H between 

15 – 40 mm, the temperature of the skin was maintained more time at low 

temperature for high distances; but for H between 40 – 80 mm, the results were 

opposite, thus the distance which had the maximum deposition of cryogen 

droplets was H = 40 mm. 

In the present study, the distance between the nozzle and the test surface 

were: 3 mm, 7 mm and 12 mm. In each case, the total volumetric flow rate was 

varied from 336.6 ml/min to 627 ml/min; but for the case of H = 12 mm, part of 

the fluid did not impinge to the test surface (see Table 1, subchapter 3.3). 
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2.3.2 Volumetric Flow Rate 

The volumetric flow rate and the temperature of the working fluid are 

definitely the parameters which affect most the heat transfer during spray 

cooling. Both parameters have been studied by many researchers and the 

results of their studies are in agreement.  

In the present investigation, the total volumetric flow rates were: 336.6, 

464.6, 523.8, 583, and 627 ml/min, which were obtained by varying the nozzle 

pressure: 10, 15, 20, 25, 30 psi respectively. The volumetric flow rate impacting 

the surface area depended on the nozzle - test surface distance and the 

pressure. For very large distances and high pressures, some liquid did not 

impinge the test surface, thus the volumetric flow rate was reduced by 7.54% (for 

H = 12 mm, P = 20 psi); and by 24.38% (for H = 12 mm, P = 25 psi; and H = 12 

mm, P = 30 psi). 
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Chapter Three - Experimental Results 

 

3.1 Heat Flux and Temperature of Surface Calculation 

 In this study, the heat flux depended on the temperature difference 

between the thermocouples embedded in the cartridge holder, the distance 

between the thermocouples, and the thermal conductivity of the cartridge holder 

(see also Chapter 1). 

 The heat flux was calculated using equation (3). An example of the 

calculation for the case where the heat flux along points (1)-(2) was greater than 

points (2)-(3), and for the case where H = 7 mm, IP = 247.2 W and the V” = 336.6 

ml/min is shown in Appendix A. 

 The results for the heat flux and the temperature of the heated surface for 

all the cases are shown in Appendix B. 

 

3.2 Heat Transfer Coefficient Calculation 

In this study, the heat transfer coefficient depended on the heat flux, the 

surface temperature calculated in 3.1, and the temperature of the fluid which is 

20.5 °C. An example of heat transfer coefficient calculation for H = 3mm, V” = 

336.6 ml/min and IP = 163.5 W is shown in Appendix C. The results of the heat 

transfer coefficient for all the cases are shown in Appendix D. 



 Many researchers use the curve heat transfer coefficient (h) versus heat 

flux (q”) as a way to determine the spray cooling performance.  Figures 22, 23 

and 24, show the heat transfer coefficient versus heat flux for different volumetric 

flow rates at H = 3 mm, 7 mm and 12 mm respectively. 
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3.3 Volumetric Flow Rate Calculation 

 In the present study, 5 different pressures (10, 15, 20, 25 and 30 psi) were 

used producing different volumetric flow rates at three distances (H = 3, 7 and 12 

mm). This volumetric flow rate impacting the test surface (V”) was different from 

the total volumetric flow rate (V”T) for the case of H = 12 mm and pressures over 

20 psi. At high pressures, the angle of the spray became greater and 

consequently the spray area became greater than the test surface area. 

 An example for the calculation of the volumetric flow rate is shown in 

Appendix E. 

 For the case when Aw > Aspray , the volumetric flow rate on the test surface 

was the same as the total volumetric flow rate (V” = V”T). The next table shows 

the volumetric flow rate on the test surface for different pressures (P) and 

distances (H). 

Table 1: Volumetric Flow Rate on the Test Surface in (ml/min) for Different Pressures and 
                     Distance between the Test Surface and the Nozzle. 

Pressure 
(psi) 

H(mm) 
10 15 20 25 30 

3 336.6 464.6 523.8 583 627 
7 336.6 464.6 523.8 583 627 

12 336.6 464.6 484.28 440.83 474.1 
      

 

3.4 Uncertainty and Error Calculations 

In the present investigation, uncertainties for heat flux, and volumetric flow 

rate were calculated. The uncertainty of the heat flux depends on the uncertainty 

of the distance between two levels of thermocouples, the temperature difference 

between two consecutive points, and the variation of the thermal conductivity of 
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the copper cylinder. The uncertainty of the volumetric flow rate depends on the 

uncertainty of the flowmeter, the uncertainty of the ratio between the sprayed 

area and the test area, and the uncertainty of the distance between the nozzle 

and the test surface. 

 

3.4.1 Heat-Flux Uncertainty Calculation 

In this study, the uncertainty of heat flux (Uq”) depended on the uncertainty 

of the following parameters: measured temperature difference (U∆T), the spatial 

separation (U∆x) and the thermal conductivity of the copper cylinder (UKCu). 

Beckwith, 1990 and Holman, 1989 suggested the following equation to 

measure the uncertainty of heat flux: 

Uq” = [ (UK)2 + (U∆T)2 + (U∆X)2 ]1/2            (16) 
                          q”       KCu       ∆T          ∆X 

 

A. Temperature Difference Uncertainty Calculation (U∆T) 

In the case of the measured temperatures, it is very important to recall that 

the uncertainty is on the difference (∆T) of the temperatures and not only on one 

temperature. This uncertainty can be calculated using equation (13): 

U∆T
2 = UT1

2 + UT2
2                       (17) 

Where: UT1 and U T2 are the uncertainties of thermocouple at distances (1) 

and (2). 

The uncertainty for both thermocouples is the same due to the fact that 

only one type of thermocouple (Type K), and only one acquisition system were 

used. In this particular case, UT1 = UT2 = 0.001 °C. 



Then, replacing in equation (17): 

U∆T
2 = 0.0012 + 0.0012

→ U∆T = 0.0014 °C 

B. Uncertainty Spatial Separation Calculation (U∆x) 

In the case of the spatial separation (∆X), the diameter of the 

thermocouples was slightly shorter than the diameter of the holes. This produced 

an uncertainty about the distance from one thermocouple to another (shown in 

Figure25). 

 

Figure 25: Uncertainty of the Spatial Separation between Thermocouples. 
 

The uncertainty can be expressed as the difference between the 

maximum/minimum and the average separation: 
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→ U∆X = (10.5 – 10) = +0.5 mm 



C. Uncertainty Thermal Conductivity of the Cartridge Holder Calculation  

     (UKCu) 

A thermal conductivity of 400 W/m K was used to calculate the heat flux, 

which varied less than 13 W/m K over the temperature range reported in the 

results (JAHM Software, Inc. [43], see Figure 26). 

 

Figure 26: The Temperature Dependence of the Thermal Conductivity of  
                        Selected Solids [44]. 

 
Then the uncertainty of the thermal conductivity of the cartridge holder can 

be expressed as: 

→ UKCu = 13 W/m K 

In order to calculate the uncertainty of the heat flux, the following 

quantities were used: 
 53
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• q” = 1742160 W/m2 (for the case of 3 mm_627 ml/min_50%) 

• ∆T = 35.7 °C (temperature difference between points 2 and 3 (see 

Figure 10) for the same case) 

• ∆x = 10 mm  

• KCu = 400 W/m K 

• U∆T = 0.0014 °C 

• U∆X = + 0.5 mm 

• UKCu = 13 W/m K 

Using all these quantities, the uncertainty of the reported heat flux was 

calculated using equation (16): 

Uq” = 1742160 W/m2 [ (  13 )2 + (0.0014)2 + (0.5)2 ]1/2

                                             400          35.7          10 

Uq” = 103888.87 W/m2  or   Uq” = 5.9% 
                q” 

 
 
 

3.4.2 Volumetric Flow Rate Uncertainty Calculation 

The uncertainties were obtained experimentally and by calculation. The 

total volumetric flux (the maximum volumetric flux the nozzle gives to the test 

surface) was measured experimentally using a flow meter (see subchapter 

2.1.1). Figure 27 shows the relation between the pressure and the total 

volumetric flux. 
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Figure 27: Relation between Pressure and Total Volumetric Flux. 

 

This curve can be considered linear from 15 to 50 psi, and then the 

uncertainty of the flow meter can be obtained from this calculation: 

Using the flow meter calibration data, the flow for a scale reading of 35 is 

987 ml/min; and for 30 is 829 ml/min. Interpolating these two data, the flow for a 

scale reading of 34 is 955.4 ml/min. 

The minimum volumetric flux the equipment can read is:  

987-955.4 = 31.6 ml/min 

Then, the uncertainty of the flow meter is half of the minimum reading: 

31.6 / 2 = + 15.8 ml/min 

Table 2: Relation between Pressure and Total Volumetric Flux. 
Pressure 

(psi) 
Flow 
scale 

Flow rate 
(ml/min) 

Uncertainty 
(ml/min) 

10 11 336.6 
15 16 464.6 
20 18 523.8 
25 20 583 
30 22 627 
35 24 671 
40 26 720.2 
45 27.5 761 
50 29 801.8 

+/- 15.8 
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The test surface received in some cases only a fraction of this total 

volumetric flux (shown in Figure 21). The fraction of the test surface area with the 

maximum spray area defined the uncertainty of the volumetric flux used in the 

experiments. 

 The spray area depends on the nozzle pressure. In this experiment, 

between 10 to 30 psi, the angle of the spray increased between 35° to 60° with 

an uncertainty of +/- 2.5° (see Table 3). 

Table 3: Relation between Pressure and Spray Angle. 
Pressure 

(psi) 
Spray Angle 

(º) Uncertainty (º) 

10 35 
15 45 
20 55 
25 60 
30 60 

+/- 2.5 

  

 The spray area is not only related to the spray angle but also to the 

distance between the nozzle and the test surface. If the nozzle is very close to 

the test surface, all the fluid will impinge it. If the nozzle is far from the test 

surface, then only part of the fluid will impinge it. Table 4 shows the ratio between 

the theoretical coverage (W) and the distance (H) from the nozzle to the test 

surface for many spray angles. 

Table 4: Ratio between the Theoretical Coverage (W) and Distance (H) at Various 
                           Spray Angles. 

INCLUDED 
SPRAY ANGLE 

(º) 
5 10 15 20 25 30 35 

W/H RATIO 0.087 0.175 0.263 0.353 0.443 0.536 0.631 
INCLUDED 

SPRAY ANGLE 
(º) 

40 45 50 55 60 65 70 

W/H RATIO 0.728 0.828 0.933 1.04 1.15 1.27 1.4 
  



  The nozzle pressure was high enough to assure that the fluid would 

impinge the test surface. This assertion is demonstrated by the ratio between the 

nozzle pressure and the distance between the nozzle and the test surface (H) as 

shown in Table 5. 

Table 5: Relationship of the Pressure Head at the Nozzle to the Distance (H). 
DISTANCE (psi) mmH2O 

3 mm 7 mm 12 mm 
10 7040.97 2347 1006 587 
15 10561.46 3521 1509 880 
20 14081.95 4694 2012 1174 
25 17602.43 5868 2515 1467 
30 21122.92 7041 3018 1760 

 

 

DISTANCE (H) 

Figure 28: Spray Coverage (from BEX SPRAY NOZZLES, Catalog N°52). 

 In this study, the actual coverage and theoretical coverage (W), shown in 

Figure 28, are considered similar because the distance (H) is very small. The 

nozzle, used in this study, is a commercial nozzle which is commonly used for 

larger distances (H), necessitating differentiation of actual and theoretical 

coverage. Thus, the difference between the actual and theoretical coverage is 

negligible for the small distances used in the present investigation. 
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 Using the ratio (r=W/H) it is very easy to calculate the uncertainties for the 

area (Aspray)of the spray using the formulas given before: 

 

Aspray = π x [r x H]2
                             4 
 
 Where r is the ratio given in Table 4, and H is the distance between the 

nozzle and the test surface in mm. The most critical case is with the highest ratio 

and highest distance (H), as we can see in the next calculation: 

Aspray = C x r2 x H2                      (18) 
 

 Where C is a constant = 0.7854 
 
 Calculation of uncertainty (using the equations given before):  

 
UAspray = 2 x Ur + 2 x UH

                                Aspray            r            H 
 
 

 Then:                     UAspray = Aspray x [2 x Ur + 2 x UH]          (19) 
                                                            r           H 

Replacing (18) in (19): 

UAspray = C x r2 x H2 x 2 x Ur + C x r2 x H2 x 2 x UH
                                                    r                                H 
 

→ UAspray = 2 x C x r x H x [H x Ur + r x UH] 

 Here, we can see the critical case is for r maximum and H maximum. The 

uncertainty (Ur) has to be calculated because it depends on the spray angle 

which has an uncertainty of + 2.5°. 
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Using Table 4 and interpolations, the following results were obtained: 

Table 6: Maximum and Minimum Ratios for a Spray Angle of 60°. 
INCLUDED 

SPRAY ANGLE 
(º) 

55 57.5 60 62.5 65 

W/H RATIO 1.04 1.095 1.15 1.21 1.27 
                 

 From Table 6, we can calculate the uncertainty: 1.21 – 1.15 = 0.06 or 

1.15-1.095 = 0.055. Thus, the uncertainty is +/- 0.06. 

 Finally, using H = 7 mm, and UH = 0.5 mm (Uncertainty of a ruler), the 

uncertainty of the sprayed area is:  

UAspray = 2 x 0.7854 x 1.15 x 7 mm x [7 mm x 0.06 + 1.15 x 0.5 mm] 

→ UAspray = +12.58 mm2

 As it was recalled before, the volumetric flow rate impacting the test surface 

is only a fraction of the total volumetric flux rate. If the flux is considered uniform 

in the spray, then the volumetric flow rate can be obtained as follows:  

V” = V”T x Aw                            (20) 
                                                    Aspray 

 
 Before calculating the uncertainty of the volumetric flow rate on the test 

surface, it is very important to calculate the uncertainty of the area of the test 

surface: 

Aw = π x Φ2 = C x Φ2 

                                             4 
 

Where: Φ = 12 mm (diameter of the test surface). 

 Then, using the equations presented before: 

UAw = 2 x C x Φ x UΦ 

Where: C = 0.7854 
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   UΦ = 0.01 mm (uncertainty of caliper) 

 Replacing: UAw = 2 x 0.7854 x 12 mm x 0.01 mm = 0.19 mm2. 

 Finally, the uncertainty of the volumetric flux rate for the test surface can 

be calculated as follows: 

UV” = V” [ UV”T + UAw + UAspray]            (21) 
                                        V”T       Aw       Aspray 
 

Where: UV”T = 15.8 ml/min, uncertainty of the total volumetric flux (from      
                       Table 2). 

  UAspray = 12.58 mm2

  UAw = 0.19 mm2 

  Aw = π x (12 mm)2 / 4 = 113.1 mm2

 Replacing (20) in (21), we obtain: 

UV” = Aw x UV”T + VT x UAw + VT x Aw x UAspray 
                         Aspray           Aspray               Aspray

2

 
 The uncertainty of the volumetric flow rate for the test surface (UV”) is 

critical with a maximum total volumetric flux rate (V”T) and a minimal sprayed 

area (Aspray). This condition produces an invalid uncertainty, as we can see in the 

next example: 

  Using: Maximum total volumetric flux rate, V”T = 627 ml/min from  
 
 Table 2. 
 

Minimal sprayed area, Aspray = π x [0.63 x 3mm]2 =2.8mm2

                                                                    4 
 The uncertainty is: 

UV” = 113.1 mm2x 15.8 ml/min + 627 ml/min x 0.19 mm2 + 
                        2.8 mm2                             2.8 mm2 
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                             627 ml/min x 113.1 mm2 x 12.58 mm2 = 114468.29 ml/min 

                                    (2.8 mm2)2

 The error in the calculation of the uncertainty is due mainly of the bad 

assumption that the test surface can receive more than the total volumetric flux. 

This explanation can be seen clearly in this equation: 

V” = V”T x Aw                           
                                                       Aspray 
 

 This equation has been used to calculate the volumetric flux rate for the 

test surface (V”). If we insert all the parameters that have been used to calculate 

UV", we will obtain an incredible high V”. 

V” = 627 ml/min x 113.1 mm2 = 25326.32 ml/min 
                               2.8 mm2

 
Explanation: The equation to obtain V” is only valid when the sprayed area 

(Aspray) is equal or greater than the area of the test surface (Aw). If AW is greater 

than Aspray, then the volumetric flow rate on the test surface is equal to the total 

flow rate. This means that the uncertainty for the case when all the fluid impinge 

the test surface is the same as the uncertainty for the total volumetric flux rate 

(UV”T = 15.8 ml/min); but for the case when part of the fluid impinges on the test 

surface, the uncertainty involves the ratio between Aw and Aspray, and the critical 

condition is when the Aw/Aspray = 1. 

 Then, reevaluating the uncertainty: 

 
UV” = 113.1 mm2x 15.8 ml/min + 627 ml/min x 0.19 mm2 + 

                        113.1 mm2                        113.1 mm2
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                            627 ml/min x 113.1 mm2 x 12.58 mm2 = 86.59 ml/min 

                                (113.1 mm2)2

 In this study, there were only three cases in which Aspray was greater than 

Aw, for the distance between the nozzle and the test surface of 12 mm and at 20, 

25 and 30 psi of pressure. The error in percentage in each case is less than 

20%: 

• For 12 mm and 20 psi:  

V” = 484.28 + 86.59 ml/min or 484.28 + 17.88% 

• For 12 mm and 25 psi: 

V” = 440.83 + 86.59 ml/min or 440.83 + 19.64% 

• For 12 mm and 30 psi: 

V” = 474.1 + 86.59 ml/min or 474.1 + 18.26% 

 The conclusion from all these calculations is that even though critical 

parameters were used, the uncertainty of the volumetric flux rate on the test 

surface was relatively low (86.59 ml/min or less than 20% in percentage error). 

 

3.5 Heat Transfer Curves 

 Many researchers use heat transfer curves in order to demonstrate how 

different parameters affect the heat transfer characteristics. Heat transfer curves 

usually show heat fluxes versus the temperature difference between the heated 

surface and the temperature of the working fluid (Tw – Tf), or versus the 

difference between the heated surface and the saturation temperature of the fluid 

(Tw – Tsat). For this study, the temperature of the fluid (Tf = 20.5 °C) was used 



instead of the saturation temperature of the fluid. Figures 29, 30 and 31 show the 

heat transfer curves for different volumetric flow rate at different H.  

 Error bars, based on uncertainty analysis results, are included in the 

graphs. In Figure 30, the heat fluxes for volumetric flow rates of 336.6, 464.6, 

and 523.8 ml/min are the same when considering the uncertainty of the results 

according to the displayed error bars. Also, because of the uncertainty of the 

results, in Figure 31, the heat fluxes for volumetric flow rates of 440.83, 464.6, 

474.1, and 484.28 ml/min are the same. In Figure 32, the heat fluxes for the 

three distances (3, 7, and 12 mm) are the same; and in Figure 35, the heat fluxes 

for the volumetric flow rate of 583 ml/min and distance of 7mm are the same as 

for the  volumetric flow rate of 440.83 ml/min and distance of 12mm. 
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Figure 29:  Heat Transfer Curve for H = 3mm and Different Volumetric Flow Rates. 
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Figure 30:  Heat Transfer Curve for H = 7 mm and Different Volumetric Flow Rates. 
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Figure 31:  Heat Transfer Curve for H = 12 mm and Different Volumetric Flow Rates. 
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Figures 32 and 33 show the heat transfer curves for different H, at volumetric 

flow rate of 336.6 ml/min and 464.6 ml/min respectively. 
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Figure 32:  Heat Transfer Curve for V” = 336.6 ml/min and Different H. 
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Figure 33:  Heat Transfer Curve for V” = 464.6 ml/min and Different H. 

 65



Figures 34 - 36 show how the reduction of the volumetric flow rate affects 

the heat flux. 
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Figure 34:  Heat Transfer Curve for P=20 psi (V” = 523.8 ml/min for H = 3 mm and 7 mm; V” =  

                     484.28 ml/min for H = 12 mm) at Different H. 
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Figure 35: Heat Transfer Curve for P = 25 psi (V” = 583 ml/min for H = 3 mm and 7 mm; V” =  

                     440.83 ml/min for H = 12 mm) at Different H. 
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Figure 36: Heat Transfer Curve for P = 30 psi (V” = 627 ml/min for H = 3 mm and 7 mm; V” =  

                     474.1 ml/min for H = 12 mm) at Different H. 
 

 Table 7 and Figure 37 show a comparison of the results of this 

investigation to those of other researchers like Jiang, and Mudawar. Mudawar, I., 

and Estes, K.A. [33], studied the effect of spray nozzle orifice, volumetric flux, 

liquid subcooling and working fluids like Fluorinert FC-72, FC-87, and water. The 

boiling curves presented by Mudawar and Estes show that there is a slight 

increase in slope of the boiling curves between the single phase and nucleate 

boiling regimes for high volumetric fluxes. 

Table 7: Comparison between Present and Previous Works. 
Author Sato Jiang [10] Mudawar [33] 

q"(W/cm^2) 
min-max 1.9 – 451 10 – 110 2-190 

G x 103 
(ml/s/mm2) 
min-max 

54 – 92 3.3 0.6 - 9.96 
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Figure 37: Comparison between Present and Previous Works. 
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Chapter 4 – Discussion and Conclusion 

 

 Heat fluxes between 1.92 to 451 W/cm2; 2.1 to 417.3 W/cm2 and 1.9 to 

409.5 W/cm2 were obtained for H = 3, 7 and 12 mm respectively at various input 

power levels. These high heat fluxes are very similar to heat fluxes obtained by 

Lin, L. et al [7] near Tw = 100 °C. For a flow rate of 298.8 ml/min and a test 

surface temperature of 100 °C, Lin obtained a heat flux over 270 W/cm2; while for 

the present study with H = 3 mm, volumetric flow rate of 336.6 ml/min, and a test 

surface temperature of 100 °C, the heat flux was near 276 W/cm2, which 

represents a difference of 6 W/cm2 or less than 2.5%. 

 Effect of the distance between the test surface and the nozzle: In this 

study, for low pressure cases, the effect of the distance on the heat flux was 

insignificant, as shown in Figures 33 and 34. This is because at very small 

distances, the sprayed area was very small compared with those at larger 

distances. But at higher pressures, the heat flux was relatively affected by the 

distance (H). This behavior is due to the fact that at higher distances, part of the 

fluid did not impinge the test surface, hence there was a decrease in the 

volumetric flow rate. 

 Effect of the volumetric flow rate: This parameter affects the heat flux for 

the three distances but especially for H = 3 mm. In the case of H = 3mm, Tw = 
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100 °C, and volumetric flow rate range from 336.6 to 627 ml/min, the heat flux 

varied from 276.3 to 484.5 W/cm2 respectively; which represents a difference of  

208.2 W/cm2. The effect of the volumetric flow rate decreases when the distance 

(H) increases, for example for the case of H = 7 mm, Tw = 100 °C, and volumetric 

flow rate range from 336.6 to 627 ml/min, the heat flux varied from 283.04 to 380 

W/cm2 respectively; which represents a difference of 96.96 W/cm2. In conclusion, 

higher heat fluxes can be obtained using higher volumetric flow rates, but this 

effect is clearly diminished by the distance (H). This conclusion is very similar to 

many other researchers, even though their volumetric flow rates were lower than 

those used in the present study. Ortiz, L. & González, J. E. [8] for example 

obtained a significantly increase of the heat flux for volumetric flow rates ranging 

1.48 to 2.91 l/h (24.67 to 48.5 ml/min).  
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Chapter 5 – Recommendations 

 

The experimental results in this investigation are valid only for the case of 

single - phase regime due to the fact that it was not possible to increment more 

the input power into the heater. For future studies, it is very important to design a 

new apparatus which can reach higher temperatures. An example of an 

improvement of the apparatus is the material used as a test surface. An Inconel 

alloy 625 test surface which can held temperatures over 500 °C, could be used 

instead of a copper test surface. 

 It is also very important to understand the impact behavior of the droplets 

to the heated surface for the case of an up - ward facing spray cooling. The 

impact behavior of a down-ward facing and an up - ward facing spray cooling are 

not probably the same due to the fact that the gravity would play an important 

role, especially at high distances and low pressures. 

 The parameters studied in this investigation (distance (H) and volumetric 

flow rate) are two of many other parameters that affect the heat flux. These 

parameters could be studied in a near future; some of them were already studied 

for the case of down-ward facing spray cooling like: angle of incidence, finishing 

surface, number of nozzles, Sauter mean diameter, droplet velocity, etc., but they 
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still need to be studied for up-ward facing and some of them even for  lateral 

facing spray cooling. 
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Appendix A: Heat Flux and Temperature of Surface Calculation 

 

The temperatures in points (1), (2) and (3) were: 

• TC1,m = 87.65 °C. 

• TC2,m = 128.74 °C. 

• TC3,m = 166.12 °C. 

Then the heat flux along points (1)-(2) can be calculated as: 

q”1-2 = 400 W/mK x (128.74 - 87.65) = 1643600 W/m2

                                                              0.01m 

The same with points (2)-(3): 

q”2-3 = 400 W/mK x (166.12 - 128.74) = 1495200 W/m2

                                                              0.01m 

Then the heat flux between the heated surface and point (1) can be calculated 

using equation (4): 

q”w-1 = 1643600 + 13 x  (1643600 - 1495200) = 1740060 W/m2

                                                                20 
 

The temperature of the heated surface can be obtained from the calculated heat 

flux, using equation (5): 

Tw = 87.65 °C – 0.003 m x 1740060 W/m2 = 74.6 °C 
                                                               400 W/mK 
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         Table 8: Heat Flux and Temperature of the Heated Surface for H = 3 mm. 
 

V” = 336.6 ml/min V” = 464.6 ml/min V” = 523.8 ml/min V” = 583 ml/min V” = 627 ml/min Input 
Power 

(W) 
Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

1.5           21.89 19213 22.29 41014.12 22.2 38344 22.27 37179.68 22.33 69714.16
7.2           23.72 71570.4 22.93 62805.2 23.6 76822 22.76 60410 22.6 85798.4

19.9           26.31 145943.76 25.29 154476.2 25.77 207524.24 24.61 160522.32 23.99 177493.52
37.7           30.18 260738.08 28.86 256584.12 28.83 287281.8 26.87 268968.8 25.83 300343.28
63.1           35.32 426793.92 32.92 447721.08 32.63 420324.84 29.86 401286.32 28.2 462035.08
92.6           45.57 720741.8 38.1 606586.96 40.23 620974.8 34.15 642257.84 31.89 728515
122.6 50.32          780181.44 43.92 878349.8 42.94 826108.56 39.88 884540.88 34.01 880433.12
163.5           62.54 1123225.32 49.93 1139029.24 47.48 1167232.24 43.94 1174559.68 34.8 927684.36
202.7           68.37 1326443.16 59.22 1456557.44 52.86 1501833.96 54.88 1601187.52 44.67 1274480
247.2           75.35 1677236.68 66.15 1655300.88 61.41 1872365.04 57.98 1767223.64 52.16 1742160
296           83.35 2105760.76 71.5 2103209.04 66.12 2203171.68 67.24 2205062.08 60.39 2144920

359.2           93.64 2529772.36 80.29 2431119.6 72.44 2550210.56 71.01 2548466.28 65.22 2667340
416.7           102.56 2857340.28 87.7 2854858.28 83.85 2892233.12 75.29 2969995.04 72.39 3178180
491 112.91          3229739.08 105.02 3028784.52 90.38 3336728.92 81.96 3398593.96 79.9 3682940

557.4           124.35 3608324.48 117.32 3438969.24 97.21 3761921.48 95.76 3795441.04 87.41 4031780
628.6           136.98 3854440 130.89 3795765.6 107.85 4079969.96 101.7 4210666.2 94.76 4506780
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         Table 9: Heat Flux and Temperature of the Heated Surface for H = 7 mm. 
 

V” = 336.6 ml/min V” = 464.6 ml/min V” = 523.8 ml/min V” = 583 ml/min V” = 627 ml/min Input 
Power 

(W) 
Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

1.5           21.89 19213 22.29 41014.12 22.2 38344 22.27 37179.68 22.33 69714.16
7.2           23.72 71570.4 22.93 62805.2 23.6 76822 22.76 60410 22.6 85798.4

19.9           26.31 145943.76 25.29 154476.2 25.77 207524.24 24.61 160522.32 23.99 177493.52
37.7 30.18          260738.08 28.86 256584.12 28.83 287281.8 26.87 268968.8 25.83 300343.28
63.1           35.32 426793.92 32.92 447721.08 32.63 420324.84 29.86 401286.32 28.2 462035.08
92.6           45.57 720741.8 38.1 606586.96 40.23 620974.8 34.15 642257.84 31.89 728515
122.6           50.32 780181.44 43.92 878349.8 42.94 826108.56 39.88 884540.88 34.01 880433.12
163.5           62.54 1123225.32 49.93 1139029.24 47.48 1167232.24 43.94 1174559.68 34.8 927684.36
202.7           68.37 1326443.16 59.22 1456557.44 52.86 1501833.96 54.88 1601187.52 44.67 1274480
247.2           75.35 1677236.68 66.15 1655300.88 61.41 1872365.04 57.98 1767223.64 52.16 1742160
296           83.35 2105760.76 71.5 2103209.04 66.12 2203171.68 67.24 2205062.08 60.39 2144920

359.2           93.64 2529772.36 80.29 2431119.6 72.44 2550210.56 71.01 2548466.28 65.22 2667340
416.7           102.56 2857340.28 87.7 2854858.28 83.85 2892233.12 75.29 2969995.04 72.39 3178180
491           112.91 3229739.08 105.02 3028784.52 90.38 3336728.92 81.96 3398593.96 79.9 3682940

557.4           124.35 3608324.48 117.32 3438969.24 97.21 3761921.48 95.76 3795441.04 87.41 4031780
628.6           136.98 3854440 130.89 3795765.6 107.85 4079969.96 101.7 4210666.2 94.76 4506780
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V” = 336.6 ml/min V” = 464.6 ml/min V” = 523.8 ml/min V” = 583 ml/min V” = 627 ml/min Input 
Power 

(W) 
Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

Tsurf 
(°C) 

Heat flux 
(W/m2K) 

1.5           21.89 19213 22.29 41014.12 22.2 38344 22.27 37179.68 22.33 69714.16
7.2           23.72 71570.4 22.93 62805.2 23.6 76822 22.76 60410 22.6 85798.4

19.9           26.31 145943.76 25.29 154476.2 25.77 207524.24 24.61 160522.32 23.99 177493.52
37.7           30.18 260738.08 28.86 256584.12 28.83 287281.8 26.87 268968.8 25.83 300343.28
63.1           35.32 426793.92 32.92 447721.08 32.63 420324.84 29.86 401286.32 28.2 462035.08
92.6           45.57 720741.8 38.1 606586.96 40.23 620974.8 34.15 642257.84 31.89 728515
122.6           50.32 780181.44 43.92 878349.8 42.94 826108.56 39.88 884540.88 34.01 880433.12
163.5           62.54 1123225.32 49.93 1139029.24 47.48 1167232.24 43.94 1174559.68 34.8 927684.36
202.7           68.37 1326443.16 59.22 1456557.44 52.86 1501833.96 54.88 1601187.52 44.67 1274480
247.2           75.35 1677236.68 66.15 1655300.88 61.41 1872365.04 57.98 1767223.64 52.16 1742160
296           83.35 2105760.76 71.5 2103209.04 66.12 2203171.68 67.24 2205062.08 60.39 2144920

359.2           93.64 2529772.36 80.29 2431119.6 72.44 2550210.56 71.01 2548466.28 65.22 2667340
416.7           102.56 2857340.28 87.7 2854858.28 83.85 2892233.12 75.29 2969995.04 72.39 3178180
491           112.91 3229739.08 105.02 3028784.52 90.38 3336728.92 81.96 3398593.96 79.9 3682940

557.4           124.35 3608324.48 117.32 3438969.24 97.21 3761921.48 95.76 3795441.04 87.41 4031780
628.6           136.98 3854440 130.89 3795765.6 107.85 4079969.96 101.7 4210666.2 94.76 4506780

A
ppendix B

: (C
ontinued) 

82

 
 
 

 
                 Table 10: Heat Flux and Temperature of the Heated Surface for H = 12 mm. 
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Appendix C: Heat Transfer Coefficient Calculation 

 

As an example of calculation, data from experiments with H = 3 mm, V” = 336.6 

ml/min, and IP = 163.5 W were used: 

 
• q” = 1123225.32 W/m2 

• Tw = 62.54 °C. 

Using equation (8), the heat transfer coefficient was: 

h = 1123225.32  = 26718.01 W/m2K 
                                          (62.54-20.5) 
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 Table 11: Heat Transfer Coefficient for H = 3 mm. 
  

Input 
Power 

(W) 

V” = 336.6 ml/min 
h (W/m2K) 

V” = 464.6 ml/min 
h (W/m2K) 

V” = 523.8 ml/min 
h (W/m2K) 

V” = 583 ml/min 
h (W/m2K) 

V” = 627 ml/min 
h (W/m2K) 

1.5      13822.30 22912.92 22555.29 21005.47 38095.17
7.2      22226.83 25845.76 24781.29 26730.09 40856.38

19.9      25119.41 32249.73 39378.41 39056.53 50857.74
37.7      26935.75 30691.88 34487.61 42224.30 56349.58
63.1      28798.51 36048.40 34651.68 42872.47 60004.56
92.6      28749.17 34465.17 31473.63 47051.86 63960.93
122.6      26163.03 37504.26 36814.11 45641.94 65168.99
163.5      26718.01 38703.00 43262.87 50109.20 64873.03
202.7      27709.28 37617.70 46410.20 46573.23 52729.83
247.2      30578.61 36260.70 45767.91 47151.11 55027.16
296      33504.55 41239.39 48293.99 47177.19 53770.87

359.2      34588.08 40660.97 49099.16 50454.69 59645.35
416.7      34820.14 42483.01 45654.82 54206.88 61248.41
491      34950.10 35835.12 47749.41 55297.66 62002.36

557.4      34745.54 35519.20 49040.82 50431.05 60256.76
628.6      33091.00 34385.05 46708.30 51855.50 60689.20
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Table 12: Heat Transfer Coefficient for H = 7 mm. 
 

Input 
Power 

(W) 

V” = 336.6 ml/min 
h (W/m2K) 

V” = 464.6 ml/min 
h (W/m2K) 

V” = 523.8 ml/min 
h (W/m2K) 

V” = 583 ml/min 
h (W/m2K) 

V” = 627 ml/min 
h (W/m2K) 

1.5      21565.28 8825.23 18907.97 18978.15 22761.16
7.2      21732.12 15051.11 21139.54 18942.48 21733.91
19.9      23557.63 18860.39 24936.37 23926.12 25509.25
37.7      24857.83 21044.45 26169.05 25724.43 27487.53
63.1      27552.14 23003.56 30761.00 27072.16 33172.81
92.6      26320.44 23823.22 29455.01 30513.51 35324.18

122.6      29392.10 25809.81 32085.44 35962.50 36507.90
163.5      29965.22 26576.76 32082.01 35875.29 36711.87
202.7      28870.98 31600.83 34652.27 37154.97 40545.91
247.2      32156.97 33956.27 35042.52 37470.30 42193.21
296      33716.00 35193.13 41434.91 44973.59 41028.19

359.2      35446.15 32319.89 36731.25 39906.63 44895.63
416.7      35643.66 35912.29 33375.94 41860.26 45516.06
491      37393.21 37598.84 38463.16 41074.18 47229.27

557.4      35623.63 38548.66 37997.77 41071.87 47801.99
628.6      35690.94 38192.35 38832.21 41583.26 47371.67
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Table 13: Heat Transfer Coefficient for H = 12 mm. 

 
Input 

Power 
(%) 

V” = 336.6 ml/min 
h (W/m2K) 

V” = 440.83 ml/min  
h (W/m2K) 

V” = 464.6 ml/min  
h (W/m2K) 

V” = 474.1 ml/min  
h (W/m2K) 

V” = 484.28 ml/min  
h (W/m2K) 

1.5      29600.74 30906.53 12612.55 13342.56 13666.43
7.2      27415.60 30130.53 20132.71 23220.94 24460.12
19.9      10108.56 31892.84 29339.44 30135.94 30413.97
37.7      23597.42 30860.86 32275.50 32063.79 33287.20
63.1      21030.21 33787.62 34419.51 34027.22 34979.82
92.6      26461.89 35319.32 35511.54 34758.30 36046.44

122.6      25224.10 35956.05 36483.22 35519.49 36961.91
163.5      26055.84 36822.90 37756.45 36140.46 37993.01
202.7      27885.76 38956.30 38845.06 38223.59 39147.28
247.2      29711.96 39533.30 39727.37 38740.15 40746.97
296      31520.33 39516.26 41031.28 38684.05 40767.79

359.2      34613.51 39814.51 40221.56 38718.96 40843.12
416.7      34946.16 40247.30 40445.73 38831.06 41177.04
491      34861.77 40701.51 40782.39 39500.02 41756.44

557.4      36710.64 40331.58 41684.18 41124.14 42780.57
628.6      35118.29 42493.07 42613.08 42495.31 43153.70

A
ppendix D

: (C
ontinued) 

 
 
 

 

86



 87

Appendix E: Volumetric Flow Rate Calculation 

 

As an example of calculation, a distance H = 12 mm and P = 25 psi were used. 

Other parameters used were area of the test surface (Aw), and sprayed area 

(Aspray) : 

• Aw = 113.1 mm2 (using Φ = 12 mm, see subchapter 3.4.2). 

• Aspray = 149.6 mm2 (using W/H = 1.15 and H = 12 mm, see subchapter 

3.4.2). 

The total volumetric flow rate was measured using a flowmeter. For the case of P 

= 25 psi, V”T was 583 ml/min (see Table 2, from subchapter 3.4.2). Then, the 

volumetric flow rate in the test surface was calculated using the following 

formula: 

V” = V”T x Aw 
                     Aspray 

 
→ V” = 440.83 ml/min 
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